Static and Vibration Analyses of a Composite CFRP Robot Manipulator
نویسندگان
چکیده
This paper reports analyses of a 5-degrees-of-freedom (5-DOF) carbon fiber-reinforced polymer (CFRP) robot manipulator, which has been developed for farm applications. The manipulator was made aluminum alloy (AA) and steel materials. However, to check the effectiveness CFRP materials on static free-vibration performance AA parts were replaced with CFRP. For this purpose, effects various cross-sections layups three design criteria—deflection, load-carrying capacity, natural frequency—were investigated. Two types thin-walled laminated sections, specifically I section rectangular tubular used composite parts. These from hollow square (“SSS” section) beams (“III” beams. multi-cell modeled using finite element (FE) method. Three configurations selected analysis based manipulator’s most common operating conditions. results indicated that use increased frequencies, decreased tip deflection when compared its counterpart. An showed in structure could improve vibrational performances. It observed “SSS” 1.17 times stiffer, carry 1.20 higher load, 1.40 heavier than “III” Also, decreasing fiber direction angle-ply 90° 0° adding plies, while keeping total number layers constant, frequencies.
منابع مشابه
Static and Free Vibration Analyses of Functionally Graded Nano-composite Plates Reinforced by Wavy Carbon Nanotubes Resting on a Pasternak Elastic Foundation
In this study, static and free vibration analyses of functionally graded (FG) nanocomposite plates, reinforced by wavy single-walled carbon nanotubes (SWCNTs) resting on a Pasternak elastic foundation, were investigated based on a mesh-free method and modified first-order shear deformation theory (FSDT). Three linear types of FG nanocomposite plate distributions and a uniform distribution of wa...
متن کاملsemi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method
در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...
15 صفحه اولStatic and Free Vibration Analyses of Orthotropic FGM Plates Resting on Two-Parameter Elastic Foundation by a Mesh-Free Method
In this paper, static and free vibrations behaviors of the orthotropic functionally graded material (FGM) plates resting on the two-parameter elastic foundation are analyzed by the a mesh-free method based on the first order shear deformation plate theory (FSDT). The mesh-free method is based on moving least squares (MLS) shape functions and essential boundary conditions are imposed by transfer...
متن کاملComparison study between layered and functionally graded composite beams for static deflection and stress analyses
The aim of this paper is to compare the static deflections and stress results of layered and functionally graded composite beams under static load. In the comparison study, the results obtained for a cantilever beam under point load. The Timoshenko beam and the Euler-Bernoulli beam theories are used in the beam model. The energy based Ritz method is used for the solution of the problem and alge...
متن کاملBending and Free Vibration Analyses of Rectangular Laminated Composite Plates Resting on Elastic Foundation Using a Refined Shear Deformation Theory
In this paper, a closed form solution for bending and free vibration analyses of simply supported rectangular laminated composite plates is presented. The static and free vibration behavior of symmetric and antisymmetric laminates is investigated using a refined first-order shear deformation theory. The Winkler–Pasternak two-parameter model is employed to express the interaction between the lam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of composites science
سال: 2022
ISSN: ['2504-477X']
DOI: https://doi.org/10.3390/jcs6070196